HelioBatch

class HelioBatch(index)[source]

Batch class for solar observations processing.

index

Unique identifiers of batch items.

Type

FilesIndex

aia_intscale(i, src, dst, wavelength)[source]

Adjust intensity to AIA standard.

Parameters
  • src (str) – A source for image.

  • dst (str) – A destination for results.

  • wavelength (int) – Image wavelength.

Returns

batch – Batch with adjusted images.

Return type

HelioBatch

apply(i, func, src, dst, **kwargs)[source]

Apply a func to each item in src and write results in dst.

Parameters
  • src (str, tuple of str) – A source for data.

  • dst (same type as src) – A destination for results.

  • func (callable) – A function to apply.

  • kwargs (misc) – Any additional named arguments to func.

Returns

batch – Processed batch.

Return type

HelioBatch

apply_meta(i, func, src, dst, **kwargs)[source]

Apply a func to each item in meta.

Parameters
  • src (str, tuple of str) – A source for meta.

  • dst (same type as src) – A destination for results.

  • func (callable) – A function to apply.

  • kwargs (misc) – Any additional named arguments to func.

Returns

batch – Processed batch.

Return type

HelioBatch

property attributes

List of data keys.

correct_degradation(i, src, dst, **kwargs)[source]

Apply aiapy.calibrate.correct_degradation procedure to AIA data.

Parameters
  • src (str) – A source for AIA map.

  • dst (str) – A destination for results.

  • kwargs (misc) – Any additional named arguments to dump method.

Returns

batch – Batch with corrected AIA maps.

Return type

HelioBatch

property data

Observational data.

deepcopy()[source]

Make a deep copy of batch.

deg2sin(i, src, dst)[source]

Transform a Latitude synoptic map to Sine Latitude.

Parameters
  • src (str) – A source for synoptic map.

  • dst (str) – A destination for results.

Returns

batch – Batch with transformed synoptic maps.

Return type

HelioBatch

disk_center_crop(i, src, dst)[source]

Crop disk to radius.

Parameters
  • src (str) – A source for data.

  • dst (str) – A destination for results.

Returns

batch – Batch cropped data.

Return type

HelioBatch

disk_resize(i, src, dst, output_shape, **kwargs)[source]

Resize solar disk image and update center location and radius.

Parameters
  • src (str) – A source for solar disk images.

  • output_shape (tuple) – Shape of output images. Axes ratio should be the same as for source image.

  • kwargs (misc) – Any additional named arguments to skimage.transform.resize method.

Returns

batch – Batch with resized images and adjusted meta.

Return type

HelioBatch

downscale_local_mean(i, func, src, dst, **kwargs)

Apply downscale_local_mean to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.downscale_local_mean.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • factors (array_like) – Array containing down-sampling integer factor along each axis.

  • cval (float, optional) – Constant padding value if image is not perfectly divisible by the integer factors.

  • clip (bool, optional) – Unused, but kept here for API consistency with the other transforms in this module. (The local mean will never fall outside the range of values in the input image, assuming the provided cval also falls within that range.)

Returns

batch – Down-sampled image with same number of dimensions as input image.

Return type

Batch

drop_empty_days(mask)[source]

Drop batch items without active regions.

Parameters

mask (str) – A source for active regions masks.

Returns

batch – Batch without empty observations.

Return type

HelioBatch

dtype_limits(i, func, src, dst, **kwargs)

Apply dtype_limits to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.dtype_limits.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • clip_negative (bool, optional) – If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values.

Returns

batch – Lower and upper intensity limits.

Return type

Batch

dump(src, path, format, **kwargs)[source]

Dump data in various formats.

Supported formats: npz, txt, binary, fits, abp, blosc and any of matplotlib.pyplot.imsave supported formats.

Parameters
  • src (str) – A source for data to save.

  • path (str) – Path where to write output files.

  • format (str) – Output file format.

  • kwargs (misc) – Any additional named arguments to dump method.

Returns

batch – Batch unchanged.

Return type

HelioBatch

dump_group_patches(i, src, dst, meta=None, min_area=0)[source]

Dump group pathes into separate .npz files.

fillna(i, src, dst, value=0.0)[source]

Replace NaN with a given value.

Parameters
  • src (str) – A source for array.

  • dst (str) – A destination for results.

  • value (scalar) – Value to be used to fill NaN values. Default to 0.

Returns

batch – Batch NaN replaced.

Return type

HelioBatch

filter_regions(i, src, dst, min_area, **kwargs)[source]

Filter regions with pixel area less than npix.

Parameters
  • src (str) – A source for binary mask.

  • dst (str) – A destination for results.

  • min_area (int) – Minimal area in pixels.

  • kwargs (misc) – Additional label keywords.

Returns

batch – Batch with filtered masks.

Return type

HelioBatch

fit_mask(i, src, dst, target)[source]

Fit mask to new disk center and radius.

Parameters
  • src (str) – A source for mask.

  • dst (str) – A destination for new mask.

  • target (str) – A disk image to fit to.

Returns

batch – Batch with new masks.

Return type

HelioBatch

fit_scale(i, src, dst, target, labels=False, background=0)[source]

Fit data scale to the target disk radius.

Parameters
  • src (str) – A source for data.

  • dst (str) – A destination for new image.

  • target (str or int) – Target radius. If str, then get radius from the target meta.

  • labels (bool) – Data contains labels. Default False.

  • background (scalar) – Background label. Default 0.

Returns

batch – Batch with rescaled images.

Return type

HelioBatch

flip(i, src, axis, dst=None, p=True, update_meta=False)[source]

Apply axis reversing. Accepts random parameter p for aurgemntation.

Parameters
  • src (str, tuple of str) – A source for images.

  • dst (same type as src) – A destination for results.

  • axis (int) – Axis in array, which entries are reversed.

  • p (bool or R) – Probabilistic parameter for augmentation, e.g. p = R(‘choice’, a=[True, False], p=[0.5, 0.5]) will flip images with probability 0.5.

  • update_meta (bool) – Update meta with new image orientation. Default to False.

Returns

batch – Batch with flipped images.

Return type

ImageBatch

get_pixel_params(i, src, dst, meta=None)[source]

Get coordinates and area of individual pixels for regions identified in solar disk image.

Parameters
  • src (str) – A source for binary mask.

  • dst (str) – A destination for results.

  • meta (str, optional) – An optional source for meta information.

Returns

batch – Batch with parameters calculated.

Return type

HelioBatch

get_polygons(src, dst, coords='hgc', tolerance=3, cache=True)[source]

Get polygons from binary mask.

Parameters
  • src (str) – A source for binary masks.

  • dst (str) – A destination for polygons.

  • coords (str) – Coordinates for polygons: ‘hgc’ for Carrington heliographic, ‘plane’ for pixel coordinates.

Returns

batch – Batch with polygons calculated.

Return type

HelioBatch

get_radius(i, src, dst, hough_radii, sigma=2, raise_limits=False, logger=None)[source]

Estimate solar disk center and radius.

Parameters
  • src (str) – A source for solar disk images.

  • hough_radii (tuple) – Mininal and maximal radius to search.

  • sigma (scalar, optional) – Canny filter parameter. Default 2.

  • raise_limits (bool, optional) – Raise error if radius found is in the end of search interval. Default False.

  • logger (logger, optional) – Logger for messages. Default None.

Returns

batch – Batch with updated meta.

Return type

HelioBatch

get_region_props(i, src, dst, level=0.5, tolerance=3, cache=True)[source]

Get region properties.

Parameters
  • src (str) – A source for binary mask.

  • dst (str) – A destination for props.

  • level (float) – Value along which to find contours in the array. Default 0.5.

  • tolerance (int, optional) – A tolerance for contour approximation. Default 3.

  • cache (bool, optional) – Use cache in regionprops.

Returns

batch – Batch with props calculated.

Return type

HelioBatch

group_by_index()[source]

Stack batch items according to batch index.

Returns

batch – A new batch with stacked items.

Return type

HelioBatch

Notes

Meta will be lost.

hough_circle(i, func, src, dst, **kwargs)

Apply hough_circle to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.hough_circle.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • radius (scalar or sequence of scalars) – Radii at which to compute the Hough transform. Floats are converted to integers.

  • normalize (boolean, optional (default True)) – Normalize the accumulator with the number of pixels used to draw the radius.

  • full_output (boolean, optional (default False)) – Extend the output size by twice the largest radius in order to detect centers outside the input picture.

Returns

batch – Hough transform accumulator for each radius.

Return type

Batch

hough_ellipse(i, func, src, dst, **kwargs)

Apply hough_ellipse to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.hough_ellipse.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • threshold (int, optional) – Accumulator threshold value.

  • accuracy (double, optional) – Bin size on the minor axis used in the accumulator.

  • min_size (int, optional) – Minimal major axis length.

  • max_size (int, optional) – Maximal minor axis length. If None, the value is set to the half of the smaller image dimension.

Returns

batch – Where (yc, xc) is the center, (a, b) the major and minor

Return type

Batch

hough_line(i, func, src, dst, **kwargs)

Apply hough_line to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.hough_line.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • theta (1D ndarray of double, optional) – Angles at which to compute the transform, in radians. Defaults to a vector of 180 angles evenly spaced from -pi/2 to pi/2.

Returns

batch – Hough transform accumulator.

Return type

Batch

img_as_bool(i, func, src, dst, **kwargs)

Apply img_as_bool to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_bool.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_float(i, func, src, dst, **kwargs)

Apply img_as_float to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_float.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_float32(i, func, src, dst, **kwargs)

Apply img_as_float32 to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_float32.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_float64(i, func, src, dst, **kwargs)

Apply img_as_float64 to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_float64.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_int(i, func, src, dst, **kwargs)

Apply img_as_int to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_int.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_ubyte(i, func, src, dst, **kwargs)

Apply img_as_ubyte to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_ubyte.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

img_as_uint(i, func, src, dst, **kwargs)

Apply img_as_uint to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.img_as_uint.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • force_copy (bool, optional) – Force a copy of the data, irrespective of its current dtype.

Returns

batch – Output image.

Return type

Batch

imshow(src, i, mask=None, ax=None, figsize=None, cmap=None, s=None, color=None, **kwargs)[source]

Show image data with optional mask countours overlayed.

Parameters
  • src (str) – Image data source.

  • i (int) – Integer data index.

  • mask (str, optional) – Mask to be overlayed.

  • ax (matplotlib axes, optional) – Axes to plot in.

  • figsize (tuple, optional) – Size of figure.

  • cmap (cmap) – Matplotlib color map for image.

  • s (int) – Point size for contours.

  • color (color) – Matplotlib color for contours.

  • kwargs (misc) – Additional imshow keywords.

property index

Batch index.

property indices

Batch items identifiers.

integral_image(i, func, src, dst, **kwargs)

Apply integral_image to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.integral_image.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

Returns

batch – Integral image/summed area table of same shape as input image.

Return type

Batch

jsoc_load(path, series, email, method='url', protocol='fits', verbose=True)[source]

Download data from JSOC based on DateTime column in the batch index.

Parameters
  • path (str) – Directory to save files.

  • series (str) – JSOC series name, e.g. hmi.M_720s.

  • email (str) – User email.

  • method (str) – drms export method. Default fits.

  • protocol (str) – drms export protocol. Default url.

  • verbose (bool) – drms export and download verbose option. Default True.

Returns

batch – Batch unchanged.

Return type

HelioBatch

label_synoptic_map(src, dst)[source]

Label regions in a binary synoptic map. Takes into account connections at 360 and 0 longitude.

Parameters
  • src (str) – A source for binary synoptic map.

  • dst (str) – A destination for labeled map.

Returns

batch – Batch with labeled synoptic maps.

Return type

HelioBatch

load(src, dtype=None, meta=None, **kwargs)[source]

Load batch data from source.

Parameters
  • src (str, tuple of str) – Index column labels with data sources.

  • dtype (dtype) – The type of output arrays.

  • meta (str) – Index column label with data meta information.

  • kwargs (misc) – Any additional named arguments to data and meta loaders.

Returns

batch – Batch with loaded data.

Return type

HelioBatch

make_polar_plots(i, src, dst, path, figsize=None, axes=False, labelsize=14, pad=None, **kwargs)[source]

Make polar projections from a synoptic map.

Parameters
  • src (str) – A source for synoptic maps.

  • path (str) – Path where to write output files.

  • figsize (tuple) – Output size of figure.

  • kwargs (misc) – Additional positional argumets to pcolormesh.

Returns

batch – Batch unchanged.

Return type

HelioBatch

map_to_synoptic(i, src, dst, bins, average=None, deg=True)[source]

Make a synoptic map from a solar disk image.

Parameters
  • src (str) – A source for images.

  • dst (str) – A destination for results.

  • bins ((nx, ny)) – Longitudinal and latitudinal resolution of synoptic map.

  • average (callable) – Average function. Default is a mean function.

  • deg (bool) – If True, all angles are in degrees. Default to True.

Returns

batch – Batch with synoptic maps.

Return type

HelioBatch

mask_disk(i, src, dst, fill_value=nan)[source]

Set dummy value to pixels outside the solar disk.

Parameters
  • src (str) – A source for disk images.

  • dst (str) – A destination for results.

  • fill_value (scalar) – A value to be set to pixels outside the solar disk. Default to np.nan.

Returns

batch – Batch with masked disk.

Return type

HelioBatch

match_histogram(i, src, dst, reference)[source]

Histogram matching.

Parameters
  • src (str) – A source for image.

  • dst (str) – A destination for results.

  • reference (str) – Reference image to match histogram with.

Returns

batch – Batch with adjusted images.

Return type

HelioBatch

match_histograms(i, func, src, dst, **kwargs)

Apply match_histograms to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.match_histograms.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • reference (ndarray) – Image to match histogram of. Must have the same number of channels as image.

  • multichannel (bool, optional) – Apply the matching separately for each channel.

Returns

batch – Transformed input image.

Return type

Batch

property meta

Meta information on observations.

probabilistic_hough_line(i, func, src, dst, **kwargs)

Apply probabilistic_hough_line to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.probabilistic_hough_line.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • threshold (int, optional) – Threshold

  • line_length (int, optional) – Minimum accepted length of detected lines. Increase the parameter to extract longer lines.

  • line_gap (int, optional) – Maximum gap between pixels to still form a line. Increase the parameter to merge broken lines more aggressively.

  • theta (1D ndarray, dtype=double, optional) – Angles at which to compute the transform, in radians. If None, use a range from -pi/2 to pi/2.

  • seed (int, optional) – Seed to initialize the random number generator.

Returns

batch – List of lines identified, lines in format ((x0, y0), (x1, y1)),

Return type

Batch

props2hgc(src, meta)[source]

Map props in i,j coordinates to HGC (Heliographic-Carrington) coordinates.

Parameters
  • src (str) – A source for props.

  • meta (str) – A source for disk meta information.

Returns

batch – Batch with props calculated.

Return type

HelioBatch

props2hpc(src, meta, resolution)[source]

Map props in i,j coordinates to HPC (Helioprojective-Cartesian) coordinates.

Parameters
  • src (str) – A source for props.

  • meta (str) – A source for disk meta information.

  • resolution (float) – Pixel resolution in arcsec.

Returns

batch – Batch with props calculated.

Return type

HelioBatch

pyramid_expand(i, func, src, dst, **kwargs)

Apply pyramid_expand to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.pyramid_expand.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • upscale (float, optional) – Upscale factor.

  • sigma (float, optional) – Sigma for Gaussian filter. Default is 2 * upscale / 6.0 which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution.

  • order (int, optional) – Order of splines used in interpolation of upsampling. See skimage.transform.warp for detail.

  • mode ({'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional) – The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’.

  • cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

  • multichannel (bool, optional) – Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension.

Returns

batch – Upsampled and smoothed float image.

Return type

Batch

pyramid_gaussian(i, func, src, dst, **kwargs)

Apply pyramid_gaussian to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.pyramid_gaussian.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • max_layer (int, optional) – Number of layers for the pyramid. 0th layer is the original image. Default is -1 which builds all possible layers.

  • downscale (float, optional) – Downscale factor.

  • sigma (float, optional) – Sigma for Gaussian filter. Default is 2 * downscale / 6.0 which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution.

  • order (int, optional) – Order of splines used in interpolation of downsampling. See skimage.transform.warp for detail.

  • mode ({'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional) – The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’.

  • cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

  • multichannel (bool, optional) – Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension.

Returns

batch – Generator yielding pyramid layers as float images.

Return type

Batch

pyramid_laplacian(i, func, src, dst, **kwargs)

Apply pyramid_laplacian to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.pyramid_laplacian.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • max_layer (int, optional) – Number of layers for the pyramid. 0th layer is the original image. Default is -1 which builds all possible layers.

  • downscale (float, optional) – Downscale factor.

  • sigma (float, optional) – Sigma for Gaussian filter. Default is 2 * downscale / 6.0 which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution.

  • order (int, optional) – Order of splines used in interpolation of downsampling. See skimage.transform.warp for detail.

  • mode ({'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional) – The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’.

  • cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

  • multichannel (bool, optional) – Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension.

Returns

batch – Generator yielding pyramid layers as float images.

Return type

Batch

pyramid_reduce(i, func, src, dst, **kwargs)

Apply pyramid_reduce to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.pyramid_reduce.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • downscale (float, optional) – Downscale factor.

  • sigma (float, optional) – Sigma for Gaussian filter. Default is 2 * downscale / 6.0 which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution.

  • order (int, optional) – Order of splines used in interpolation of downsampling. See skimage.transform.warp for detail.

  • mode ({'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional) – The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’.

  • cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

  • multichannel (bool, optional) – Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension.

Returns

batch – Smoothed and downsampled float image.

Return type

Batch

radon(i, func, src, dst, **kwargs)

Apply radon to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.radon.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • (image.shape[0] // 2, image.shape[1] // 2) (indices) –

Returns

batch – Radon transform (sinogram). The tomography rotation axis will lie

Return type

Batch

region_statistics(i, src, dst, sin, hmi=None)[source]
Calculates statistics for regions in a binary synoptic map:
  • area (\(10^{12}\) \(km^2\))

  • mean latitude (in degrees, North at \(90^{\circ}\))

  • largest Carrington longitude (in degrees)

  • positive flux (\(10^{22}\) Mx, if hmi is not None and in Gauss)

  • negative flux (\(10^{22}\) Mx, if hmi is not None and in Gauss)

Parameters
  • src (str) – A source for binary synoptic map.

  • dst (str) – A destination for statistics.

  • sin (bool) – Sine Latitude synoptic map.

  • hmi (str, optional) – Magnetic synoptic map for flux calculation. Default to None.

Returns

batch – Batch with statistics.

Return type

HelioBatch

rescale(i, func, src, dst, **kwargs)

Apply rescale to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.rescale.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • scale ({float, tuple of floats}) – Scale factors. Separate scale factors can be defined as (rows, cols[, …][, dim]).

Returns

batch – Scaled version of the input.

Return type

Batch

resize(i, func, src, dst, **kwargs)

Apply resize to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.resize.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • output_shape (tuple or ndarray) – Size of the generated output image (rows, cols[, …][, dim]). If dim is not provided, the number of channels is preserved. In case the number of input channels does not equal the number of output channels a n-dimensional interpolation is applied.

Returns

batch – Resized version of the input.

Return type

Batch

rot90(i, src, dst, axes=(0, 1), k=1, update_meta=False)[source]

Apply rotation of an image by 90 degrees given number of times.

Parameters
  • src (str, tuple of str) – A source for images.

  • dst (same type as src) – A destination for results.

  • axes ((2,) array_like) – The array is rotated in the plane defined by the axes. Axes must be different. Default to (0, 1).

  • k (int or R) – Probabilistic parameter for augmentation, e.g. k = R(‘choice’, a=np.arange(4)) will rotate images random number of times.

  • update_meta (bool) – Update meta with new image orientation. Default to False.

Returns

batch – Batch with rotated images.

Return type

HelioBatch

rotate(i, func, src, dst, **kwargs)

Apply rotate to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.rotate.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • angle (float) – Rotation angle in degrees in counter-clockwise direction.

  • resize (bool, optional) – Determine whether the shape of the output image will be automatically calculated, so the complete rotated image exactly fits. Default is False.

  • center (iterable of length 2) – The rotation center. If center=None, the image is rotated around its center, i.e. center=(cols / 2 - 0.5, rows / 2 - 0.5). Please note that this parameter is (cols, rows), contrary to normal skimage ordering.

Returns

batch – Rotated version of the input.

Return type

Batch

rotate_p_angle(i, src, dst, deg=True, labels=False, background=0, **kwargs)[source]

Rotate disk image to P=0 around disk center.

Parameters
  • src (str) – A source for disk images.

  • dst (str) – A destination for results.

  • deg (bool) – Angles are in degrees. Default True.

  • labels (bool) – Data contains labels. Default False.

  • background (scalar) – Background label.

  • kwargs (misc) – Any additional named arguments to skimage.transform.rotate method.

Returns

batch – Batch with rotated disk.

Return type

HelioBatch

show_sun(src, i, figsize=None, ax=None, c='blue', c2='red', c3='green', grid=True, grid_lw=0.5, deg=True)[source]

Show active regions on the solar disk.

Parameters
  • src (str) – Data source. Binary mask or contours.

  • i (int) – Integer data index.

  • figsize (tuple, optional) – Size of figure.

  • kwargs (misc) – Additional imshow keywords.

sin2deg(i, src, dst)[source]

Transform a Sine Latitude synoptic map to Latitude.

Parameters
  • src (str) – A source for synoptic map.

  • dst (str) – A destination for results.

Returns

batch – Batch with transformed synoptic maps.

Return type

HelioBatch

stack_synoptic_maps(i, src, dst, shift, scale, weight_decay=None, deg=True)[source]

Stack synoptic maps corresponding to disk images into a single map.

Parameters
  • src (str) – A source for synoptic maps corresponding to disk images.

  • dst (str) – A destination for results.

  • shift (scalar) – A parameter for pixel weights according to weight_decay(-(dist - shift) / scale).

  • scale (scalar) – A parameter for pixel weights according to weight_decay(-(dist - shift) / scale).

  • weight_decay (callable) – Function to get a pixel weight based on its distance from central meridian. Distance unit should be degree. Default is sigmoid function.

  • deg (bool) – If True, all angles are in degrees. Default to True.

Returns

batch – Batch with synoptic maps.

Return type

HelioBatch

swirl(i, func, src, dst, **kwargs)

Apply swirl to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.swirl.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • center ((column, row) tuple or (2,) ndarray, optional) – Center coordinate of transformation.

  • strength (float, optional) – The amount of swirling applied.

  • radius (float, optional) – The extent of the swirl in pixels. The effect dies out rapidly beyond radius.

  • rotation (float, optional) – Additional rotation applied to the image.

Returns

batch – Swirled version of the input.

Return type

Batch

url_load(src, path, rename=False, fmt='%Y-%m-%dT%H%M%S')[source]

Download data from URL address and save to local directory.

Parameters
  • src (str) – Index colum label with data sources.

  • path (str) – Directory to save files. Directory should exist.

  • rename (bool) – Leave file names unchanged or make new names based on datetime and the source name. Default False.

  • fmt (str, optional) – Datetime format of the renamed files. Used if rename=True.

Returns

batch – Batch unchanged.

Return type

HelioBatch

warp(i, func, src, dst, **kwargs)

Apply warp to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.warp.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified.

  • inverse_map (transformation object, callable cr = f(cr, **kwargs), or ndarray) –

    Inverse coordinate map, which transforms coordinates in the output images into their corresponding coordinates in the input image.

    There are a number of different options to define this map, depending on the dimensionality of the input image. A 2-D image can have 2 dimensions for gray-scale images, or 3 dimensions with color information.

    • For 2-D images, you can directly pass a transformation object, e.g. skimage.transform.SimilarityTransform, or its inverse.

    • For 2-D images, you can pass a (3, 3) homogeneous transformation matrix, e.g. skimage.transform.SimilarityTransform.params.

    • For 2-D images, a function that transforms a (M, 2) array of (col, row) coordinates in the output image to their corresponding coordinates in the input image. Extra parameters to the function can be specified through map_args.

    • For N-D images, you can directly pass an array of coordinates. The first dimension specifies the coordinates in the input image, while the subsequent dimensions determine the position in the output image. E.g. in case of 2-D images, you need to pass an array of shape (2, rows, cols), where rows and cols determine the shape of the output image, and the first dimension contains the (row, col) coordinate in the input image. See scipy.ndimage.map_coordinates for further documentation.

    Note, that a (3, 3) matrix is interpreted as a homogeneous transformation matrix, so you cannot interpolate values from a 3-D input, if the output is of shape (3,).

    See example section for usage.

  • map_args (dict, optional) – Keyword arguments passed to inverse_map.

  • output_shape (tuple (rows, cols), optional) – Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.

  • order (int, optional) –

    The order of interpolation. The order has to be in the range 0-5:
    • 0: Nearest-neighbor

    • 1: Bi-linear (default)

    • 2: Bi-quadratic

    • 3: Bi-cubic

    • 4: Bi-quartic

    • 5: Bi-quintic

  • mode ({'constant', 'edge', 'symmetric', 'reflect', 'wrap'}, optional) – Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.

  • cval (float, optional) – Used in conjunction with mode ‘constant’, the value outside the image boundaries.

  • clip (bool, optional) – Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.

  • preserve_range (bool, optional) – Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. Also see https://scikit-image.org/docs/dev/user_guide/data_types.html

Returns

batch – The warped input image.

Return type

Batch

warp_polar(i, func, src, dst, **kwargs)

Apply warp_polar to batch data.

Parameters
  • src (str) – Attribute to get data from. Data from this attribute will be passed to the first argument of skimage.transform.warp_polar.

  • dst (str, optional) – Attribute to put data in. Will be same as input if not specified. multichannel=True, 3-D arrays are accepted and the last axis is interpreted as multiple channels.

  • center (tuple (row, col), optional) – Point in image that represents the center of the transformation (i.e., the origin in cartesian space). Values can be of type float. If no value is given, the center is assumed to be the center point of the image.

  • radius (float, optional) – Radius of the circle that bounds the area to be transformed.

  • output_shape (tuple (row, col), optional) –

  • scaling ({'linear', 'log'}, optional) – Specify whether the image warp is polar or log-polar. Defaults to ‘linear’.

  • multichannel (bool, optional) – Whether the image is a 3-D array in which the third axis is to be interpreted as multiple channels. If set to False (default), only 2-D arrays are accepted.

  • **kwargs (keyword arguments) – Passed to transform.warp.

Returns

batch – The polar or log-polar warped image.

Return type

Batch