Pytorch models¶
-
class
ConvBlock
(layout, in_channels=None, filters=None, kernel_size=3, stride=1, padding='same', rate=0.1, activation=None)[source]¶ Convolutional block.
- Parameters
in_channels (int) – Input channels size.
layout (str) – Layout of layers. Can contain “c” for convolution, “a” for activation, “n” for batchnorm, “p” for maxpooling, “d” for dropout. E.g. of layout: “ccnapd”.
filters (int, list or None) – Number of filters for convolutions. Can be a single number (all convolutions will have the same number of filters), a list of the same length as a count of letters “c” in the layout, or None if the layout contains no “c”.
rate (float) – Dropout rate parameter. Default to 0.1.
activation (function) – Activation function. If not specified activation is tf.nn.elu.
-
training
= None¶
-
class
Unet
(in_channels, depth, init_filters, kernel_size=3, output=None, norm=True)[source]¶ U-net implementation.
- Parameters
-
training
= None¶
-
class
VAE
(in_channels, filters_enc, filters_dec, z_dim, output, kernel_size=3, norm=True, variational=True)[source]¶ Convolutional VAE model.
- Parameters
in_channels (int) – Input channels size.
filters_enc (array) – Sequence of filters for encoder.
filters_enc – Sequence of filters for decoder.
z_dim (int) – Number of filters in the latent space.
output (dict) – Output conv block config for decoder.
kernel_size (int) – Kernel size in convolution layers. Default 3.
norm (bool) – Include normalization layers. Default True.
variational (bool) – If False, implemnt ordinary AE scheme. Default True.
-
training
= None¶