Tensorflow models¶
-
u_net
(images, depth, init_filters, output=None, is_training=True, verbose=0)[source]¶ U-net implementation.
- Parameters
images (4d tensor) – Input tensor.
depth (int) – Depth of the U-net.
init_filters (int) – Number of filters in the first conv block.
output (dict) – Output conv block config.
is_training (bool) – Phase of training for batchnorm. Default to True.
verbose (int) – Level for information messages. Default to 0.
- Returns
up – Output tensor.
- Return type
4d tensor
-
conv_block
(x, layout, filters=None, transpose=False, rate=0.1, activation=None, is_training=True)[source]¶ Convolutional block.
- Parameters
x (tensor) – Input tensor.
layout (str) – Layout of layers. Can contain “c” for convolution, “a” for activation, “n” for batchnorm, “p” for maxpooling, “d” for dropout. E.g. of layout: “ccnapd”.
filters (int, list or None) – Number of filters for convolutions. Can be a single number (all convolutions will have the same number of filters), a list of the same length as a count of letters “c” in the layout, or None if the layout contains no “c”.
transpose (bool) – If true, transposed convolutions are used.
rate (float) – Dropout rate parameter. Default to 0.1.
activation (function) – Activation function. If not specified activation is tf.nn.elu.
is_training (bool) – Phase of training for batchnorm. Default to True.
- Returns
x – Output tensor.
- Return type
tensor